Multi-Stage Multi-Task Feature Learning

نویسندگان

  • Pinghua Gong
  • Jieping Ye
  • Changshui Zhang
چکیده

Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to its looseness for approximating an [Formula: see text]-type regularizer. In this paper, we propose a non-convex formulation for multi-task sparse feature learning based on a novel regularizer. To solve the non-convex optimization problem, we propose a Multi-Stage Multi-Task Feature Learning (MSMTFL) algorithm. Moreover, we present a detailed theoretical analysis showing that MSMTFL achieves a better parameter estimation error bound than the convex formulation. Empirical studies on both synthetic and real-world data sets demonstrate the effectiveness of MSMTFL in comparison with the state of the art multi-task sparse feature learning algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability

Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. ‎In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set‎. ‎Therefore‎, ‎developing a machine for p...

متن کامل

Two-Stage Multi-Task Representation Learning for Synthetic Aperture Radar (SAR) Target Images Classification

In this paper, we propose a two-stage multi-task learning representation method for the classification of synthetic aperture radar (SAR) target images. The first stage of the proposed approach uses multi-features joint sparse representation learning, modeled as a ℓ 2 , 1 -norm regularized multi-task sparse learning problem, to find an effective subset of training samples. Then, a new dictionary...

متن کامل

Multi-task Feature Selection based Anomaly Detection

Network anomaly detection is still a vibrant research area. As the fast growth of network bandwidth and the tremendous traffic on the network, there arises an extremely challengeable question: How to efficiently and accurately detect the anomaly on multiple traffic? In multi-task learning, the traffic consisting of flows at different time periods is considered as a task. Multiple tasks at diffe...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Adaptive Multi-task Sparse Learning with an Application to fMRI Study

In this paper, we consider the multi-task sparse learning problem under the assumption that the dimensionality diverges with the sample size. The traditional l1/l2 multi-task lasso does not enjoy the oracle property unless a rather strong condition is enforced. Inspired by adaptive lasso, we propose a multi-stage procedure, adaptive multi-task lasso, to simultaneously conduct model estimation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in neural information processing systems

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2012